STABILITY TEST OF HTSC PHASES IN PdH SYSTEM

Paolo Tripodi^{1,2}, Daniele Di Gioacchino², Jenny Darja Vinko¹

¹ H.E.R.A., Hydrogen Energy Research Agency, Corso della Repubblica 448, 00049 Velletri, Italy

² INFN-LNF, National Laboratory of Frascati, Via E. Fermi 40, 00044 Frascati, Italy

E-mail:paolo.tripodi@heraphysics.it

Abstract. In previously published papers, preliminary results on highly hydrogen loaded palladium (PdH_x) samples with H/Pd stoichiometric ratio x>1, have shown probable multiphase HTSC superconducting states. In this letter, the stability of the new phases in the sample has been verified. After long-term sample storage of two years at room temperature and room pressure, ac susceptibility measurements in temperature have been done. The sample, that two years earlier exhibited a high temperature phase at $T_c=261.5$ K with x~1.56, presented now a T_c shift down to $T_c=160.5K$ with a x~1.46 and $T_c=82K$ with a x~1.34. The H/Pd decreases by $\Delta x\sim 0.1$ and ~ 0.21 while the T_c diminishes down to $\Delta T_c \sim 101$ K and 180K. In very high x ratio phase, slight hydrogen leakage causes significant T_c drop. Moreover, another previously existing low temperature phase $T_c=9K$ with x~1, shifts down to 6K with x~0.85. In this case the decrease of $\Delta x \sim 0.15$ causes the ΔT_c drop by 3K. In both phases, similar calculated Δx decrease percentage with subsequent reduction of the T_c estimated percentage shows a like behavior. This suggests that a single process takes place in the formation of HTSC and low T_c superconducting state in PdH_x. The measured PdH sample, before and after long-term storage and trough the thermal cycles, maintains high H loading value with high transition temperatures.

1. Introduction

In the earlier period, PdH system raised great interest for its peculiar properties [1,2]. Palladium is apt to absorb large quantity of hydrogen in the interstitial sites. H is absorbed in octahedral sites in the theoretical stoichiometric ratio $x=H/Pd^{oct}=1$. Moreover there is the possibility for hydrogen to occupy tetrahedral sites in the theoretical stoichiometric ratio of $H/Pd^{tet}=2$ [3,4]. This led to supposition that theoretical maximum stoichiometric ratio is H/Pd=3. Anyhow, there is a great experimental difficulty to achieve stoichiometric ratio H/Pd greater than unit, due to the higher energies involved in filling up of the tetrahedral sites [5]. PdH_x system shows unusual magnetic properties in function of the H loading: with progressive hydrogen stoichiometry increase at room temperature, the strong paramagnetism of the pure Pd decreases and it becomes diamagnetic at the stoichiometric ratio $H/Pd\geq0.7$. In pure Pd the 4d shell hybridized with 5s shell contain vacancies. These holes get filled with electrons of the absorbed H atoms and consequent vacancy reduction brings about the diminution and ultimately a quench of paramagnetism. Moreover, PdH_x with x=0.8 becomes superconductor at the transition temperature $T_c\sim2K$. Proportional relationship between T_c of PdH_x and stoichiometry x has been established [6-8]. Recently [9-12], with improved H loading and stabilizing techniques, possible higher superconducting transition temperatures of PdH_x system have been found. In this paper, the stability study of the new phases, found in the PdH_x sample with x>1, has been verified before and after 2 years of sample storage at room temperature and room pressure.

2. Experimental

H is loaded into Pd lattice using an electrochemical cell. The cell geometry consists of two parallel Pt square plates $(100x100x0.05mm^3)$ as anodes separated by 15cm of electrolyte. The cathode is a Pd slab sample placed in the middle between the two anodes $(4x10x0.05mm^3)$. The electrolyte consists of strontium sulfate (SrSO₄) dissolved in 18M Ω xcm water (10^{-5} M) giving a slightly acid solution (5.0 < pH < 6.5). The electrolysis requires dc current from 5mA up to 200mA. During electrolysis, to control the H-loading, a four-probe ac resistance measurement of the Pd cathode was taken with a RCL meter at 1mA and 1KHz of sinusoidal current. Highly loaded PdH samples were electrochemically stabilized by adding $(10^{-5}M)$ mercurous sulfate (Hg₂SO₄) to the electrolyte. Method details to measure the maximum mean stoichiometric value x in PdH_x sample is described in our previous paper [11].

The ac magnetic susceptibility $\chi_1 = \chi'_1 + i \chi''_1$ measurements were performed with the liquid helium flow cryostat with enclosed susceptometer. This gradiometer has an in-line double pick-up coil bridge and an exciting external ac magnetic field up to 6G with frequency in the range 31Hz<f<1KHz. The bridge pick-up coil signal, proportional to ac magnetic susceptibility is acquired with a multi-harmonic lock-in amplifier. The sample was cooled down to liquid He temperature in ZFC (Zero Field Cooling) then the temperature was slowly increased up to 300K. Each measurement is a mean value of 5 experimental points while the temperature variation range is 0.01K.

The phase between real χ'_1 and imaginary χ''_1 component has been imposed as to minimize the imaginary part at liquid He temperature.

3. Results and discussion

In the previous paper [11], the PdH_x sample exhibited a probable high temperature superconducting phase, where the real and imaginary first harmonic ac magnetic susceptibility components χ'_1 and χ''_1 show the transition temperature T_c=263.5K and T_c=261.5K. These behaviors are plotted in figures 1A and 1B. The two measurements have been performed with an elapsed time of one week. The critical temperature shift is imputed to a slight hydrogen leakage. In figure 1A the paramagnetic signal due to the measurement apparatus has not been subtracted.

In the same measurement another phase at $T_c=9K$ was found (Fig. 2). The real component of the ac magnetic susceptibility exhibits the well-known low temperature superconducting phase of PdH_x

 measurement

Fig.1A - χ'_1 component of PdH_x showing HTSC phases. Eq .1 renders $x^{first} \sim 1.562$ and $x^{second} \sim 1.563$. Elapsed time between the two

Fig. 1B - χ "₁ component of PdH_x showing HTSC phases. Eq.1 renders $x^{first} \sim 1.562$ and $x^{second} \sim 1.563$. Elapsed time between two

measurements is one week. system [6-8]. This phase corresponds to a stoichiometric value $x \sim 1$ [6-8].

3.0 PdH data O nulling data 2,8 *10⁻⁴ (arb.units) 2.6 2,4 2,2 2,0 1,8 1,6 130 135 140 145 150 155 160 165 170 Temperature (K)

Fig. 2 - χ'_1 and χ''_1 of PdH_x showing low T_c phase. Eq.1 renders x~1.017. This low phase was found in same thermal cycle shown in Fig. 1A,1B.

Fig. 3 - χ''_1 of PdH_x showing a new HTSC phase. Eq.1 renders x~1.468. Test performed on the same sample two years after the measurements shown in Fig.1A,1B, and 2.

The following equation, described in our previous paper [11] was used for the calculation of stoichiometric ratio x in respect to superconducting transition temperature:

$$x = \left(\frac{T_c}{n}\right)^{\frac{1}{n}} : (n = 7.86)$$
(1)

Using this equation, x estimations in superconducting phases shown in fig. 1A and 1B can be done, where $T_c = 263.5K$ and $T_c = 261.5K$ render $x \sim 1.5633 \pm 1 \times 10^{-4}$ and $x \sim 1.5618 \pm 1 \times 10^{-4}$ respectively. Slight hydrogen leakage, $\Delta x \sim 1.5 \times 10^{-3}$, causes significant T_c drop of $\Delta T_c \sim 1.5 K$. These HTSC phases with very high x value, exhibit a considerable dependence of the T_c from the H content values.

For the low temperature phase at T_c= 9K, found in the same thermal cycle (Fig.1A), with the calculated x~1.0173 \pm 1x10⁻⁴ the T_c variation is neglectable.

Subsequently, the sample has been stored at room temperature and room pressure for two years and then measured. Fig. 3 shows a phase with $T_c=160.5K$ and a value $x\sim1.4678\pm1x10^{-4}$ has been calculated. In the same thermal cycle, another new HTSC phase, at T_c=82.0K (Fig. 4), corresponding to $x \sim 1.3476 \pm 1 \times 10^{-4}$ was found. These phases were not present in previous measurements.

High T_c phase with $T_c=261.5$ K has shifted down to $T_c=160.5$ K and $T_c=82$ K. For the two new phases the T_c decrease of Δ T_c~101K(-39%) and Δ T_c~180K (-67%) correspond to the H leakage of $\Delta x \sim 9.4 \times 10^{-2}$, (-6%) and $\Delta x \sim 0.19$ (-13%) respectively. Moreover, a low temperature phase at T_c=6K (Fig. 5), with calculated x~ $0.9662\pm1x10^4$ was found. The low T_c=9K phase shown in Fig.2, now shifts down to T_c=6K, corresponding to a decrease of Δ T_c=3K (-33%) and Δ x~5x10⁻² (-5%).

For H loading ratio x>1, the correlation between ΔT_c and Δx confirms the strong dependence of the T_c from x content in PdH_x system. Δx de-loading percentage and consequent ΔT_c decrease percentage are similar in both phases. This leads to supposition that a single process regulates the formation of superconducting states for low T_c as well as for HTSC phases.

Furthermore, the real component χ'_1 in a superconductor is connected with the volume of superconducting phases in the sample [13]. Comparing the χ'_1 behavior of the Fig.2 and Fig.5, it is evident that the magnetic signal and hence the superconducting volume decrease by 10 factor.

measurements is one week.

The amount of H content in PdH_x system is associated with the T_c value as well as with the superconducting phase volume.

Fig.4 - χ'_1 of PdH_x sample showing another new HTSC phase, in the same thermal cycle as in Fig.3. Eq.1 renders $x\sim 1.347$.

Fig.5 - χ'_1 of PdH_x sample showing new low T_c phase in the same thermal cycle as in Fig.3. Eq.1 renders x~0.966.

4. Conclusion

Stability of the new HTSC phases in a highly loaded PdH_x sample with x>1 in time and thermal cycles has been verified. With elapsed time of one week and of 2 years, several HTSC phases in PdH_x system are still present despite of the slight H de-loading.

Analysis of the new data evidences that absolute variations of T_c with similar Δx in low T_c and HTSC phases in PdH_x system seem to have dissimilar behavior, whereas the calculated Δx decrease percentage with consequent decrease of the T_c calculated percentage shows an analogous behavior in both phases. This may well imply that in the formation of HTSC and low T_c superconducting states in PdH_x due to the H-loading, a single process takes place. Moreover, H stoichiometry in PdH sample, affects not only the T_c but also the volume of superconducting domains. Further work on the stabilizing agent technology for x>1 H-loading ratio is in progress as to eliminate even the minute H losses and preserve the HTSC phases nucleated in PdH_x system.

References

- [1] N.F.Mott, H.Jones, The theory of the properties of metal and alloys, Dover Publications (1936)
- [2] F.A. Lewis, The Palladium Hydrogen, Academic Press (1967)
- [3] G. Alefeld and J.Völkl, Hydrogen in Metals I, Springer-Verlag (1978)
- [4] G. Alefeld and J.Völkl, Hydrogen in Metals II, Springer-Verlag (1978)
- [5] C. Elsasser, K.M.Ho, C.T. Chan, and M. Fahnle Phys. Rev. B. 44 10377 (1991)
- [6] Skoskiewicz, Phys. Stat. Sol. (a) 11, K123 (1972)
- [7] B. Stritker, W. Buckel, Z. Physik **257**, 1 (1972)
- [8] J.E. Schirber, C.J.M Northrup Phys.Rev.B 10,3828 (1974)
- [9] P. Tripodi, D. Di Gioacchino, R. Borelli, J.D. Vinko, Physica C 389, 571 (2003)
- [10] P. Tripodi, D. Di Gioacchino, J.D. Vinko, Physica C 389 vol.408-410, p.350 (2004)
- [11] P. Tripodi, D. Di Gioacchino, J.D. Vinko, Braz. Journal of Physics, vol.34, n.3B p.1177 (2004)
- [12] A.G. Lipson, B.J. Heuser, C.H. Castano, A. Celik-Aktas, Phys. Lett. A 339, 414–423 (2005)
- [13] C. Poole Jr., H.A. Farach, R.J. Creswick, Superconductivity Acad. Press Inc. (1995) pg.317-320